Abstract

Warming waters are changing marine pathogen dispersal patterns and infectivity worldwide. Coupled biological–physical modelling has been used in many systems to determine the connectivity of metapopulations via infectious disease particles. Here we model the connectivity of sea lice larvae (Lepeophtheirus salmonis) among salmon farms in the Broughton Archipelago, British Columbia, Canada, using a coupled biological–physical model. The physical model simulated pathogen dispersal, while the biological component influenced the survival and developmental rates of the sea lice. Model results predicted high temporal variability in connectivity strength among farms, an emergent effect from the interacting parts of the simulation (dispersion versus survival and development). Drivers of temporal variability were disentangled using generalized additive modeling, which revealed the variability was most strongly impacted by the spring freshet, which can act as a natural aid for sea lice control in the Broughton Archipelago. Our results suggest that farm management strategies can benefit by accounting for short-term spikes in regional pathogen connectivity among farms. Additionally, future scenarios of a warming climate with reduced snowpack can make sea lice control more challenging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.