Abstract

Thin YSZ films were prepared on magnesia, sapphire and strontium titanate (STO) single crystals using pulsed laser deposition and, for comparison, by a sol-gel method on STO. The bulk and interfacial mass and charge transport properties of these films were investigated by complementary impedance spectroscopy and tracer diffusion measurements. In this context, a novel two-step tracer diffusion experiment is introduced. For YSZ films on sapphire and magnesia, grain bulk conductivities similar to those of polycrystalline samples were measured in most cases. Strongly blocking grain boundaries could be identified by impedance measurements. The films on sapphire and magnesia also exhibited good agreement between effective transport properties of impedance and tracer measurements. YSZ layers on strontium titanate single crystals, on the other hand, showed a strongly increased effective conductivity in impedance studies. However, in tracer diffusion experiments this could be unambiguously attributed to conduction in the substrate while the diffusion coefficient of YSZ on STO was comparable to that of YSZ films on other substrates. Moreover, the tracer diffusion experiments did not indicate any significant increase of oxide ion mobility on a free YSZ surface compared to a Pt|YSZ interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call