Abstract

Prior to being released from the infected cell, intracellular enveloped vaccinia virus particles are transported from their perinuclear assembly site to the plasma membrane along microtubules by the motor kinesin-1. After fusion with the plasma membrane, stimulation of actin tails beneath extracellular virus particles acts to enhance cell-to-cell virus spread. However, we lack molecular understanding of events that occur at the cell periphery just before and during the liberation of virus particles. Using live cell imaging, we show that virus particles move in the cell cortex, independently of actin tail formation. These cortical movements and the subsequent release of virus particles, which are both actin dependent, require F11L-mediated inhibition of RhoA-mDia signaling. We suggest that the exit of vaccinia virus from infected cells has strong parallels to exocytosis, as it is dependent on the assembly and organization of actin in the cell cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.