Abstract
AbstractAircraft assembly modeling requires mass solving of quadratic programming (QP) problems. Thus, reducing the computation time becomes a very urgent task. Earlier [12], it was shown that a significant reduction in time can be achieved by reformulating the original QP problem in the so-called form of the relative QP problem. The current paper discusses the aspects of using relative QP problem related to the accuracy of the computations. Data preparation for the relative QP problem involves the matrix inversions. Since the Hessian in the considered QP problems is ill-conditioned, this operation leads to a rapid accumulation of roundoff errors. The paper proposes to use the error-free operations of addition and multiplication to increase the accuracy of the QP problem solution and to maintain high computation speed for QP problem solving. Finally, a comparison of the primal, dual, and relative QP problem formulations in terms of computation time and result accuracy for assembly problems is presented.KeywordsQuadratic programmingRelative problem formulationAssembly problemsComputational accuracy
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have