Abstract

BackgroundFour malaria indicator surveys (MIS) were conducted in Zambia between 2006 and 2012 to evaluate malaria control scale-up. Nationally, coverage of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) increased over this period, while parasite prevalence in children 1–59 months decreased dramatically between 2006 and 2008, but then increased from 2008 to 2010. We assessed the relative effects of vector control coverage and climate variability on malaria parasite prevalence over this period.MethodsNationally-representative MISs were conducted in April-June of 2006, 2008, 2010 and 2012 to collect household-level information on malaria control interventions such as IRS, ITN ownership and use, and child parasite prevalence by microscopic examination of blood smears. We fitted Bayesian geostatistical models to assess the association between IRS and ITN coverage and climate variability and malaria parasite prevalence. We created predictions of the spatial distribution of malaria prevalence at each time point and compared results of varying IRS, ITN, and climate inputs to assess their relative contributions to changes in prevalence.ResultsNationally, the proportion of households owning an ITN increased from 37.8 % in 2006 to 64.3 % in 2010 and 68.1 % in 2012, with substantial heterogeneity sub-nationally. The population-adjusted predicted child malaria parasite prevalence decreased from 19.6 % in 2006 to 10.4 % in 2008, but rose to 15.3 % in 2010 and 13.5 % in 2012. We estimated that the majority of this prevalence increase at the national level between 2008 and 2010 was due to climate effects on transmission, although there was substantial heterogeneity at the provincial level in the relative contribution of changing climate and ITN availability. We predict that if climate factors preceding the 2010 survey were the same as in 2008, the population-adjusted prevalence would have fallen to 9.9 % nationally.ConclusionsThese results suggest that a combination of climate factors and reduced intervention coverage in parts of the country contributed to both the reduction and rebound in malaria parasite prevalence. Unusual rainfall patterns, perhaps related to moderate El Niño conditions, may have contributed to this variation. Zambia has demonstrated considerable success in scaling up vector control. This analysis highlights the importance of accounting for climate variability when using cross-sectional data for evaluation of malaria control efforts.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1693-0) contains supplementary material, which is available to authorized users.

Highlights

  • Four malaria indicator surveys (MIS) were conducted in Zambia between 2006 and 2012 to evaluate malaria control scale-up

  • Accounting for climate variations between 2006 and 2012 within a geostatistical framework, we show that the increase in parasite prevalence observed in several provinces between 2008 and 2010 corresponded both with decreases in household insecticide-treated nets (ITNs) coverage and with warmer and wetter conditions influencing the potential for underlying malaria transmission intensity, with a greater contribution due to climate variability

  • In Zambia, it was surmised that ITNs began to fail after 2008 and contributed to increases in national infection prevalence by 2010

Read more

Summary

Introduction

Four malaria indicator surveys (MIS) were conducted in Zambia between 2006 and 2012 to evaluate malaria control scale-up. Coverage of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) increased over this period, while parasite prevalence in children 1–59 months decreased dramatically between 2006 and 2008, but increased from 2008 to 2010. Scale-up of vector control interventions, ownership and use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), has been shown in multiple settings to reduce malaria morbidity and mortality [1,2,3,4,5]. Nationally-representative Malaria Indicator Surveys (MIS) were conducted in 2006, 2008, 2010 and 2012 to monitor the progress in household coverage of ITNs and IRS at the population level, as well as to provide estimates of malaria parasite prevalence in children 1–59 months at these time-points. There is further speculation that anomalous weather patterns-perhaps related to a relatively strong El Niño episode in late 2009 and early 2010-may have influenced this resurgence in transmission, as observed elsewhere [13, 14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.