Abstract

The diffusion equation model and the Lefkovitch matrix model have been employed independently in plant population ecology in order to analyze the dynamics of growth and size structure. The two models describe the dynamics of size structure in biological populations, and thus there must be some relationship between them. In the present paper, we examine the theoretical relationship between these two models. We demonstrate, on a certain assumption, that the one-step Lefkovitch matrix model corresponds to a difference equation of the diffusion equation and that the two- and three-step Lefkovitch matrix model correspond to difference equations of the 4th- and 6th-order Kramers-Moyal expansions, respectively. It is also shown that 2n moments (the first to the 2n-th moments) of growth rate are necessary and sufficient to rewrite uniquely the n-step Lefkovitch matrix model in terms of the linear combination of the moments. We finally discuss the relationship between the species characteristics of census data and the appropriate types of the Lefkovitch matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.