Abstract

Right ventricular (RV) afterload is a key determinant of RV function and is increased in many cardiopulmonary pathologies. Pulmonary circulation input impedance has been used to quantify afterload previously but due to its complexity has not been widely applied. This study examines the effect of a subset of the impedance spectrum, the zeroth and first harmonic impedance moduli (Z (0), Z (1)), on RV performance in large animals. An artificial circuit with adjustable resistance and compliance (C) was implanted into the pulmonary circulation of five sheep. Resistance was varied to increase Z (0) in increments of 2 mmHg/(L/min) until Z (0) was 8 mmHg/(L/min) above baseline. At each Z (0), C was adjusted between 0, 0.5 and 2 mL/mmHg or 0, 1, and 5 mL/mmHg. Fourier transforms of the pulmonary artery pressure and flow in each situation were used to calculate the pulmonary impedance. Results show that the percent change in cardiac output (%DeltaCO) is linearly related to the change in Z (0) (DeltaZ (0)). Increases in Z (1) (DeltaZ (1)) decreased %DeltaCO but to a much smaller degree, with the effect of DeltaZ (1) increasing with DeltaZ (0). Regression of these results produce the equation: %DeltaCO = (-0.0829DeltaZ (1) - 3.65)DeltaZ (0) - 9.02 (R (2) = 0.69). Blood flow and pressure moduli are small at harmonics higher than the first and are unlikely to affect RV function. Therefore, during acute, high afterload states, Z (0) is the primary determinant of CO, while the effect of Z (1) is minor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.