Abstract

The brain is most sensitively dependent on oxygen to maintain its normal function. Methods to assess the degree of its oxygenation have generally been invasive and indirect. Rapid assessment of brain oxygenation is particularly vital during cerebrospinal ischemia and hypoxia. We have developed a noninvasive electro-optical method using pulsed near-infrared (NIR) light to quantify brain oxygenation during ischemia and hypoxia in anesthetized rabbits. Cerebral ischemia was induced through 30-40s of bi-lateral carotid artery occlusion. Cerebral hypoxia was induced by varying inspired oxygen levels. The NIR light response to the interventions was expressed in terms of relative absorption (RA). Results showed that our pulsed NIR system could rapidly detect sudden alterations in oxygenation and blood flow to the brain. The response patterns during cerebral ischemia and hypoxia were significantly different, although both decreased brain oxygenation. The overall RA response to ischemia was much faster (in seconds) than during hypoxia (in minutes). These different response patterns can serve as early warning signal of low brain oxygenation and to discriminate the cause of the diminished oxygenation. The present pulsed NIR system is capable to provide a rapid, noninvasive and continuous monitoring of such decreases in brain oxygenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.