Abstract

The correlation coefficient (r) between the maximum amplitude (Rm) of a sunspot cycle and the preceding minimum aa geomagnetic index (aamin), in terms of geomagnetic cycle, can be fitted by a sinusoidal function with a four-cycle periodicity superimposed on a declining trend. The prediction index (χ) of the prediction error relative to its estimated uncertainty based on a geomagnetic precursor method can be fitted by a sinusoidal function with a four-and-half-cycle periodicity. A revised prediction relationship is found between the two quantities: χ 1.2 if r varies in a declining trend. The prediction accuracy of Rm depends on the long-term variation in the correlation. These results indicate that the prediction for the next cycle inferred from this method, Rm(24)=87±23 regarding the 75% level of confidence (1.2-σ), is likely to fail. When using another predictor of sunspot area instead of the geomagnetic index, similar results can be also obtained. Dynamo models will have better predictive powers when having considered the long-term periodicities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.