Abstract

AbstractIt is well documented that over the tropical oceans, column-integrated precipitable water (pw) and precipitation (P) have a nonlinear relationship. In this study moisture budget analysis is used to examine this P–pw relationship in a normalized precipitable water framework. It is shown that the parameters of the nonlinear relationship depend on the vertical structure of moisture convergence. Specifically, the precipitable water values at which precipitation is balanced independently by evaporation versus by moisture convergence define a critical normalized precipitable water, pwnc. This is a measure of convective inhibition that separates tropical precipitation into two regimes: a local evaporation-controlled regime with widespread drizzle and a precipitable water–controlled regime. Most of the 17 CMIP6 historical simulations examined here have higher pwnc compared to ERA5, and more frequently they operate in the drizzle regime. When compared to observations, they overestimate precipitation over the high-evaporation oceanic regions off the equator, thereby producing a “double ITCZ” feature, while underestimating precipitation over the large tropical landmasses and over the climatologically moist oceanic regions near the equator. The responses to warming under the SSP585 scenario are also examined using the normalized precipitable water framework. It is shown that the critical normalized precipitable water value at which evaporation versus moisture convergence balance precipitation decreases as a result of the competing dynamic and thermodynamic responses to warming, resulting in an increase in drizzle and total precipitation. Statistically significant historical trends corresponding to the thermodynamic and dynamic changes are detected in ERA5 and in low-intensity drizzle precipitation in the PERSIANN precipitation dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.