Abstract
Abstract A critical issue is determining the factors that control the year-to-year variability in precipitation over Southern Asia. In this study, we employ a cyclo-stationary linear inverse model (CS-LIM) to quantify the relative contribution of tropical Pacific and Indian Ocean sea surface temperature anomalies (SSTA) to the interannual variability of the Asian monsoon, especially Indian summer monsoon rainfall (ISMR). Through a series of CS-LIM experiments, we isolate the impacts of the direct forcing from Pacific SSTAs, Indian Ocean SSTAs, and their interaction on Asian monsoon rainfall variability. Our results reveal distinct patterns of influence with the direct forcing from the Pacific (Indian) Ocean tending to enhance (reduce) the magnitude of precipitation variability, while the Indo-Pacific interaction acts to strongly damp the variability of Asian monsoon precipitation, especially over India. We further investigate these specific impacts on ISMR by analyzing the relationship between tropical Indo-Pacific SSTAs and the leading three empirical orthogonal functions (EOFs) of ISMR. The results from our CS-LIM experiments indicate that the direct forcing from ENSO enhances variability of the first and third EOFs, while the Indian Ocean SSTA opposes ENSO’s effects, which is consistent with previous studies. Our new results show that the tropical Indo-Pacific interaction strongly damps ISMR variability, which is due to the ENSO-induced Indian Ocean Dipole (IOD) opposing the direct impacts from ENSO on ISMR. Additionally, reduced ENSO amplitude and duration associated with the Indo-Pacific interaction may also contribute to the damping effect on ISMR, but this requires further study to understand the relevant mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.