Abstract

PurposeTo explore relationships between patterns of fetal anthropometric growth, as reflective of fetal wellbeing, and global retinal nerve fiber layer (RNFL) thickness measured in young adulthood.MethodsParticipants (n = 481) from within a Western Australian pregnancy cohort study underwent five serial ultrasound scans during gestation, with fetal biometry measured at each scan. Optic disc parameters were measured via spectral-domain optical coherence tomography imaging at a 20-year follow-up eye examination. Generalized estimating equations were used to evaluate differences in global RNFL thickness between groups of participants who had undergone similar growth trajectories based on fetal head circumference (FHC), abdominal circumference (FAC), femur length (FFL), and estimated fetal weight (EFW).ResultsParticipants with consistently large FHCs throughout gestation had significantly thicker global RNFLs than those with any other pattern of FHC growth (P = 0.023), even after adjustment for potential confounders (P = 0.037). Based on model fit statistics, FHC growth trajectory was a better predictor of global RNFL thickness than birth weight or head circumference at birth. RNFL thickness did not vary significantly between groups of participants with different growth trajectories based on FAC, FFL, or EFW.ConclusionsFHC growth is associated with RNFL thickness in young adulthood and, moreover, is a better predictor than either birth weight or head circumference at birth.Translational RelevanceThis research demonstrates an association between intrauterine growth and long-term optic nerve health, providing a basis for further exploring the extent of the influence of fetal wellbeing on clinical conditions linked to RNFL thinning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.