Abstract

BackgroundMethionine is an essential amino acid for fish. The present study was conducted to investigate the effects of dietary methionine on growth performance, digestive and absorptive ability, as well as antioxidant capacity in the intestine and hepatopancreas of sub-adult grass carp (Ctenopharyngodon idella).ResultsDietary methionine deficiency significantly decreased percentage weight gain (PWG), feed intake, feed efficiency and protein efficiency ratio, as well as activities of hepatopancreatic glutamate-oxaloacetate transaminase and muscle glutamate-pyruvate transaminase in sub-adult grass carp (P < 0.05). Furthermore, methionine deficiency significantly reduced activities of trypsin, lipase and amylase in the intestine, Na+/K+-ATPase, alkaline phosphatase and γ-glutamyl transpeptidase in three intestinal segments, and creatine kinase (CK) in the proximal intestine (P < 0.05). However, an unexplained and significant increase in CK activity in the mid intestine was associated with dietary methionine deficiency. Malondialdehyde and protein carbonyl contents in the intestine and hepatopancreas were significantly increased by methionine deficiency (P < 0.05), whereas anti-hydroxyl radical capacity in the hepatopancreas and intestine, and anti-superoxide anion capacity in the intestine, were significantly decreased by methionine deficiency (P < 0.05). Moreover, methionine deficiency significantly decreased superoxide dismutase and glutathione reductase activities, glutathione contents in the hepatopancreas and intestine, as well as glutathione peroxidase activity in the intestine (P < 0.05), whereas it significantly increased activities of catalase in the hepatopancreas and glutathione-S-transferase in the hepatopancreas and intestine (P < 0.05).ConclusionsThe present results demonstrated that dietary methionine deficiency induced poor growth, and decreased digestive and absorptive function and antioxidant capacity in the hepatopancreas and intestine of sub-adult grass carp. Methionine requirements for sub-adult grass carp (450-1, 170 g) based on PWG, intestinal trypsin, and hepatopancreatic anti-hydroxyl radical activities were estimated to be 6.12 g/kg diet (21.80 g/kg protein), 6.99 g/kg diet (24.90 g/kg protein) and 5.42 g/kg diet (19.31 g/kg protein), respectively, in the presence of 1.50 g cysteine/kg (5.35 g/kg protein).

Highlights

  • Methionine is an essential amino acid for fish

  • The present results demonstrated that dietary methionine deficiency induced poor growth, and decreased digestive and absorptive function and antioxidant capacity in the hepatopancreas and intestine of sub-adult grass carp

  • The dietary total sulfur amino acids requirement of sub-adult grass carp (450-1, 170 g) based on the quadratic regression analysis for percentage weight gain (PWG) was estimated to be 7.6 g/kg diet (27.2 g/kg protein) in the presence of 1.5 g cysteine/kg diet, which was lower than that reported for juvenile grass carp [25], juvenile Jian carp [2], juvenile Indian major carp (Cirrhinus mrigala) [74], juvenile Labeo rohita [75], juvenile Nile tilapia [76], and adult common carp [27] (Table 9)

Read more

Summary

Introduction

The present study was conducted to investigate the effects of dietary methionine on growth performance, digestive and absorptive ability, as well as antioxidant capacity in the intestine and hepatopancreas of sub-adult grass carp (Ctenopharyngodon idella). Fish digestion and absorption abilities depend in turn on the activities of digestive and brush border enzymes, such as trypsin, lipase, amylase, alkaline phosphatase (AKP), creatine kinase (CK), γ-glutamyl transpeptidase (γ-GT), and Na+/K+-ATPase [8]. There is only one study in omnivorous fish on the relationship between methionine and the brush border enzymes, which showed that methionine improved activities of γ-GT and CK in juvenile Jian carp [2]. Digestive and brush border enzymes activities may change with feeding habits and growth stage of fish. It is worth to investigate the effects of methionine on the activities of digestive and brush border enzymes in sub-adult herbivorous fish

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.