Abstract

The impact of the un-polarized nature of chlorophyll fluorescence, which causes a dip in the degree of polarization of the underwater light field matching the fluorescence spectrum, led to the development of a theoretical relationship indicating that the resulting fractional reduction in observed polarization is linearly proportional to the magnitude of the fluorescence causing it. To evaluate this relationship, we used a vector radiative transfer code (VRTE) for the coupled atmosphere-ocean system using measured inherent optical properties (IOPs) for a variety of oligotrophic and eutrophic waters as inputs. The VRTE was used to simulate elastic components of the underwater reflectance as well as the degree of linear polarization (DoLP) for these different conditions. These values were compared with the underwater reflectances and the DoLPs measured by a multi-angular hyperspectral polarimeter to determine the magnitude of the fluorescence component in the reflectance spectra at 685 nm, and the decrease of the DoLP due to the fluorescence impact at the same wavelength. Fluorescence magnitudes retrieved from the differences between simulated and measured reflectances were found to match well the magnitudes estimated through the relationship based on the drop of the DoLP. It is noted that retrieval accuracies increase for both larger fluorescence and larger underlying DoLP values. Furthermore, measured polarization were used to approximate the elastic signal and derive fluorescence from the difference in the fluorescence vicinity. A new method evolved from the measured polarization analysis, Polarization-Curve Fluorescence Height (PCFH). These results open possibilities for estimating the magnitude of natural fluorescence using polarization measurements below or above the water surface, in-situ, or remotely from aircraft or future satellites. Results of ongoing work on potential sensitivities and retrieval accuracies for these applications will be reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.