Abstract

In pal\sgmaelig;olimnological studies, inference models based on aquatic organisms are frequently used to estimate summer lake surface water temperatures. However, the calibration of such models is often unsatisfactory because of the sparseness of measured water temperature data. This study investigates the feasibility of using air temperature data, usually available at much higher resolution, to calibrate such models by comparing regional air temperatures with surface water temperatures in 17 lakes on the Swiss Plateau. Results show that altitude-corrected air temperatures are sufficiently uniform over the entire Swiss Plateau to allow local air temperatures at any particular lake site to be adequately estimated from standard composite air temperature series. In early summer, day-to-day variability in air temperature is reflected extremely well in the temperature of the uppermost metre of the water column, while monthly mean air temperatures correspond well, with respect to both absolute value and interannual variations, with water temperatures in most of the epilimnion. Standardised altitude-corrected air temperature series may therefore be a useful alternative to surface water temperatures for the purposes of calibrating lake temperature inference models. In Northern Hemisphere temperate regions, mean air and water temperatures are likely to correspond most closely in July, suggesting that calibration and reconstruction efforts be concentrated on this month.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call