Abstract
Abstract Winter tornado activity (January–March) between 1950 and 2003 was analyzed to determine the possible effect of seasonally averaged sea surface temperatures in the equatorial Pacific Ocean, the ENSO phase, on the location and strength of tornado outbreaks in the United States. Tornado activity was gauged through analyses of tornadoes occurring on tornado days (a calendar day featuring six or more tornadoes within the contiguous United States) and strong and violent tornado days (a calendar day featuring five or more tornadoes rated F2 and greater within the contiguous United States). The tornado days were then stratified according to warm (37 tornado days, 14 violent days), cold (51 tornado days, 28 violent days), and neutral (74 tornado days, 44 violent days) winter ENSO phase. It is seen that during winter periods of neutral tropical Pacific sea surface temperatures, there is a tendency for U.S. tornado outbreaks to be stronger and more frequent than they are during winter periods of anomalously warm tropical Pacific sea surface temperatures (El Niño). During winter periods with anomalously cool Pacific sea surface temperatures (La Niña), the frequency and strength of U.S. tornado activity lies between that of the neutral and El Niño phase. ENSO-related shifts in the preferred location of tornado activity are also observed. Historically, during the neutral phase, tornado outbreaks typically occurred from central Oklahoma and Kansas eastward through the Carolinas. During cold phases, tornado outbreaks have typically occurred in a zone stretching from southeastern Texas northeastward into Illinois, Indiana, and Michigan. During anomalously warm phases activity was mainly limited to the Gulf Coast states, including central Florida. The data are statistically and synoptically analyzed to show that they are not only statistically significant, but also meteorologically reasonable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.