Abstract

In the field of ultra-precision machining, the study of the relation between chip morphology and tool wear is significant, since tool wear characteristics can be reflected by morphologies of cutting chips. In this research, the relation between chip morphology and tool flank wear is first investigated in UPRM. A cutting experiment was performed to explore chip morphologies under different widths of flank wear land. A geometric model was developed to identify the width of flank wear land based on chip morphology. Theoretical and experimental results reveal that the occurrence of tool flank wear can make the cutting chips truncated at both their cut-in and cut-out sides, and reduce the length of cutting chips in the feed direction. The width of truncation positions of the cutting chip can be measured and used to calculate the width of flank wear land with the help of the mathematical model. The present research is potentially used to detect tool wear and evaluate machined surface quality in intermittent cutting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call