Abstract

The tool wear measurement and surface quality evaluation using cutting chips is a progressive method compared to conventional ones. This is because it cannot only find the occurrence of tool wear but can also obtain tool fracture wear characteristics on-machine. The proposed method can also be used to evaluate machined surface quality on-machine and remedy the deteriorated surface by changing cutting parameters. In this chapter, tool flank wear and its effect on machined surface quality are on-machine evaluated by using cutting chips. The occurrence of tool flank wear truncates the cutting chips at both the tool entry and tool exit sides of the cutting chips. The width of truncation positions of the cutting chip can be measured and used to calculate the width of flank wear land with the help of a mathematical model. The identified width of flank wear land is also used to calculate the surface roughness with the help of a mathematical model. It is found that with the progress of the tool flank wear, the truncation position in the feed direction moves from two sides to the central position of the cutting chips; meanwhile, the surface roughness decreases at first and then increases significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.