Abstract
Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this study, the outstanding GNPs filler was reinforced to the epoxy matrix and carbon fabric/epoxy hybrid composite slabs to enrich their mechanical properties. Graphene nanoplatelets of 0.5, 1, 1.5 and 2 weight percentages were integrated into the epoxy and the physico-mechanical (microstructure, density, tensile, flexural and impact strength) properties were investigated. Furthermore, the mechanical properties of unfilled and 1 wt% GNPs filled carbon fabric/epoxy hybrid composite slabs were investigated. Subsequently, noteworthy improvement in the mechanical properties was conquered for the carbon fabric/epoxy hybrid composites.
Highlights
The outstanding Graphene nanoplatelets (GNPs) filler was reinforced to the epoxy matrix and carbon fabric/epoxy hybrid composite slabs to enrich their mechanical properties
Noteworthy improvement in the mechanical properties was conquered for the carbon fabric/epoxy hybrid composites
It can be detected that the network of microcracks, ridges, dimpled forms, and clefts on the fracture surfaces are much more noticeable for the GNPs reinforced epoxy mono-composites (Figures 1(b)-(d))
Summary
Over the past few years, extensive research has been carried out in polymer based composites, especially the thermoset epoxy matrix material strengthened with synthetic fibers and nanofillers, chiefly owing to the noteworthy enrichment of mechanical, thermo-mechanical, and electrical properties at a very low DOI: 10.4236/ojcm.2020.102003 Apr. 30, 2020
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have