Abstract

There is a vast amount of molecular information regarding the differentiation of T lymphocytes, in particular regarding in vitro experimental treatments that modify their differentiation process. This publicly available information was used to infer the regulatory network that controls the differentiation of T lymphocytes into CD4+ and CD8+ cells. Hereby we present a network that consists of 50 nodes and 97 regulatory interactions, representing the main signaling circuits established among molecules and molecular complexes regulating the differentiation of T cells. The network was converted into a continuous dynamical system in the form of a set of coupled ordinary differential equations, and its dynamical behavior was studied. With the aid of numerical methods, nine fixed point attractors were found for the dynamical system. These attractors correspond to the activation patterns observed experimentally for the following cell types: CD4−CD8−, CD4+CD8+, CD4+ naive, Th1, Th2, Th17, Treg, CD8+ naive, and CTL. Furthermore, the model is able to describe the differentiation process from the precursor CD4−CD8− to any of the effector types due to a specific series of extracellular signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.