Abstract

The requirement to increase understanding of the complex interaction between society and the environment is well documented. Dramatic evidence of the vulnerability of anthropogenic systems to short-term weather fluctuations abounds. Taking an historical perspective provides an equally impressive picture of the potential upheaval caused by longer term climate changes. However, the past (and present) may not provide an adequate analoque for the future. The greenhouse theory of climate change suggests that the changes in climate regime to be expected from enhanced atmospheric CO 2 will be of similar magnitude to the glacial-interglacial mean temperature difference, but will occur in a fraction of the time. Consequently, considerable emphasis is being placed on the role of physical climate models in determining projections of future global and regional temperature and precipitation patterns. The latter climate changes will have important implications for the distribution (in time and space) of water, a principal natural resource and basic requirement for a variety of human activities. Consequently, climate models are being applied to the question of determining the regional hydrologic response to global climate change. The latter objective is a prerequisite to assessing the likely impacts on the water resources sector. This paper reviews current progress in achieving this aim and outlines some future research directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call