Abstract

Skin fulfills a number of vital functions, many of which are dependent on its mechanical properties. Therefore, as mice have become an invaluable model for skin research, determining murine skin's mechanical properties is important. Specifically, skin's mechanical properties are important for functional tests as well as for prognostic and diagnostic purposes. Additionally, computational simulations of skin behavior are becoming commonplace, rendering accurate models of murine skin's constitutive behavior necessary. To date, our knowledge of mouse skin mechanics shows significant gaps. For example, there are no comprehensive reports correlating skin's mechanical properties with region, age, and direction. Moreover, mouse skin's residual strain behavior has not been reported on. In our current work, we set out to fill these gaps. Based on histology, 2-photon microscopy, and planar biaxial testing, while accurately tracking various reference configurations, we report on differences in gross structure, microstructural organization, and constitutive response of skin, and cast those properties into a versatile Fung-type hyperelastic constitutive law for three reference configurations. Our data is the most comprehensive report on the mechanical properties of mouse skin and will, thus, be valuable to basic science, as control data, and provide accurate constitutive laws for mouse skin modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.