Abstract

Synthetic octacalcium phosphate and porcine atelocollagen composites significantly enhanced bone regeneration more than β-tricalcium phosphate collagen composite and hydroxyapatite collagen composite in a rat cranial defect model. However, the long-term stability and quality of octacalcium phosphate collagen (OCP/Col) composites-derived regenerated bone, when implanted in a canine alveolar cleft model, have yet to be elucidated. The present study investigated the longterm stability and quality of bone regenerated by OCP/Col. Disks of OCP/Col or collagen were implanted in a canine alveolar-cleft model (n = 6). Then, bone regeneration in the implanted areas was investigated macroscopically, radiographically, and histologically at 10 months after implantation. In addition, three-dimensional quantitative images of regenerated bone were analyzed by microcomputed tomography. Macroscopically, the OCP/Col treated alveolus was clearly augmented, and radio-opacity in the OCP/Col implanted area was comparable to that of the original alveolus bone. On histological analysis, the area was mostly filled with newly formed bone, and a few granules of implanted OCP/Col were enclosed in it. In the microcomputed tomography analysis, the regenerated bone volume in the OCP/Col group was larger than that in the collagen group. OCP/Col-derived bone consisted of outer cortical and inner cancellous structure with dense trabeculae and seemed like the original bone structure. OCP/Co composites could be a useful bone regenerative material to substitute for autogenous bone because their implantation could elicit high bone regeneration and active structural reconstitution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call