Abstract

ABSTRACT The rapid uplift of the Tibetan plateau, the intense movement of the Ailao Shan-Red River Shear Zone (ARSZ), and the related climate change during the Cenozoic Indo-Asian collision have been widely studied; however, their timings varied considerably due to different data and methods used. As these events have been documented in the Red River sediment that came from the eastern Tibetan plateau and the Red River region and eventually deposited in the offshore Yinggehai and Qiongdongnan basins, here these events can be explored by calculating and analysing the Red River sediment budget, especially in the Qiongdongnan basin based on dense seismic profiles and wells. Results show that the Red River sediment mainly accumulated in the Yinggehai basin and the west part of the Qiongdongnan basin, and there are three sedimentary accumulation peaks in the Red River sediment budget during ~29.5–21, ~15.5–10.5, and ~5.5–0 Ma. By further comparing with previous studies on the timings of these events, it is inferred that the first sedimentary peak, prior to the onset of the monsoon intensification (~22 Ma), was probably driven by an intense left-lateral movement of the ARSZ in ~29.5–21 Ma. The second peak (~15.5–10.5 Ma), however, reflects a rapid uplift of the Tibetan plateau after the cessation of the left-lateral strike slip of the ARSZ. The third peak (~5.5–0 Ma) is most likely linked with a right-lateral movement of the ARSZ and the related climate change. Overall, the Red River sediment budget from the offshore Yinggehai and Qiongdongnan basins provides an important constraint on the timings of these tectonic events as well as the related climate change during the Cenozoic Indo-Asian collision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call