Abstract

The improved Ni/SBA-15 catalysts were prepared by thermal inducing method and applied to dry reforming of methane. The promoting effect exerted by thermal activated reconstruction was studied systematically by means of various characterization techniques. TEM results indicated that the thermal inducing process led to the reconstruction of Ni particles to form ultra-fine Ni nanoparticles (2–3 nm) uniformly distributed on SBA-15. The resulting Ni nanoparticles not only improved catalytic activity but also inhibited the formation of carbon deposition during the DRM reaction. The thermal treatment catalyst with tiny particles presented the superior catalytic performance in the DRM reaction, where H2/CO ratio was close to 1 and no deactivation was discovered after continuous reaction at 750 °C for 50 h. Additionally, it was found that the metal-support interaction was strengthened observably after the thermal activated reconstruction. The strong interaction anchored Ni particles to prevent their high temperature sintering, thus forming stable catalytic centers. Therefore, the conversions of both CO2 and CH4 almost stabilized at 90% and 85%, respectively, for the thermal activated reconstruction samples during the long-term catalytic test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.