Abstract
Dry reforming of methane was investigated over Ni-Zr catalysts modified by Aluminum and Manganese. The catalysts were characterized by XRD, CO2-TPD, XPS, TGA, and Raman. Among all prepared catalysts, the 5Al-5 Mn (5 wt% Al and 5 wt% Mn) catalyst showed the highest CH4 and CO2 conversion at 700 °C DRM with low carbon deposition. The CO2-TPD results exhibited that the 5Al-5 Mn catalyst had the highest amounts of both total basic sites and medium-strength basic sites, which could promote the adsorption and activation of CO2 molecule during the DRM reaction, and further reduce the carbon deposition. The XRD results suggested that the addition of both Al and Mn led to smaller nickel particle size. Besides, the lower carbon deposition on 5Al-5Mn and 2.5Al-7.5Mn catalyst was derived from a higher content of surface adsorption oxygen species, which was verified by the O 1s results. While the lower number of basic sites, more strong basic sites and larger particle size on 5Mn and 5Al catalysts result in a higher amount of carbon deposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.