Abstract

Microorganisms play a crucial role in mediating global biogeochemical cycles in the marine environment. By reconstructing the genomes of environmental organisms through metagenomics, researchers are able to study the metabolic potential of Bacteria and Archaea that are resistant to isolation in the laboratory. Utilizing the large metagenomic dataset generated from 234 samples collected during the Tara Oceans circumnavigation expedition, we were able to assemble 102 billion paired-end reads into 562 million contigs, which in turn were co-assembled and consolidated in to 7.2 million contigs ≥2 kb in length. Approximately 1 million of these contigs were binned to reconstruct draft genomes. In total, 2,631 draft genomes with an estimated completion of ≥50% were generated (1,491 draft genomes >70% complete; 603 genomes >90% complete). A majority of the draft genomes were manually assigned phylogeny based on sets of concatenated phylogenetic marker genes and/or 16S rRNA gene sequences. The draft genomes are now publically available for the research community at-large.

Highlights

  • Background & SummaryThe global oceans are a vast environment in which many key biogeochemical cycles are performed by microorganisms, the Bacteria and Archaea[1,2]

  • Several studies have started the process of reconstructing microbial genomes from these metagenomics samples, utilizing samples from the Mediterranean[11] and the bacterial size fraction (0.2–3 μm)[12]

  • We present >2,000 additional draft genomes from the Bacteria and Archaea estimated to be >50% complete reconstructed from 102 billion metagenomic sequences generated from multiple size fractions and depths at the 61 stations sampled during the Tara Oceans circumnavigation of the globe

Read more

Summary

Introduction

Background & SummaryThe global oceans are a vast environment in which many key biogeochemical cycles are performed by microorganisms, the Bacteria and Archaea[1,2]. We present >2,000 additional draft genomes from the Bacteria and Archaea estimated to be >50% complete reconstructed from 102 billion metagenomic sequences generated from multiple size fractions and depths at the 61 stations sampled during the Tara Oceans circumnavigation of the globe. Metagenomic reads from each sample in a oceanic province were recruited against the set of secondary contigs generated from that same province using

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.