Abstract

The Pleurotomarioidea, commonly referred to as slit shells, constitute one of the most ancient and enduring lineages within the phylum Mollusca, with its fossil record tracing back to the Upper Cambrian epoch. Its rareness and evolutionary antiquity surpass even that of the nautilus. In this study, we conducted the first transcriptome sequencing and analyses of Entemnotrochus rumphii (Schepman, 1879), a representative species of Pleurotomarioidea. Full-length transcriptome sequencing of E. rumphii was performed using the PacBio Sequel II platform with SMRT technology. A total of 64.38 gigabytes of data and 964,550 polymerase reads were generated, resulting in 28,068,998 subreads after data filtering. After de-duplication, correction, and clustering, we identified 19,273 genes. Additionally, next-generation sequencing was performed on 11 tissues of E. rumphii. This investigation provides a detailed portrayal and analytical scrutiny of its transcriptomic landscape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.