Abstract
Meiotic recombination is an evolutionary force that acts by breaking up genomic linkage, increasing the efficacy of selection. Recombination is initiated with a double-strand break which is resolved via a crossover, which involves the reciprocal exchange of genetic material between homologous chromosomes, or a non-crossover, which results in small tracts of non-reciprocal exchange of genetic material. Crossover and non-crossover rates vary between species, populations, individuals, and across the genome. In recent years, recombination rate has been associated with the distribution of ancestry derived from past interspecific hybridization (introgression) in a variety of species. We explore this interaction of recombination and introgression by sequencing spores and detecting crossovers and non-crossovers from two crosses of the yeast Saccharomyces uvarum. One cross is between strains which each contain introgression from their sister species, S. eubayanus, while the other cross has no introgression present. We find that the recombination landscape is significantly different between S. uvarum crosses, and that some of these differences can be explained by the presence of introgression in one cross. Crossovers are reduced and non-crossovers are increased in heterozygous introgression compared to syntenic regions in the cross without introgression. This translates to reduced allele shuffling within introgressed regions, and an overall reduction of shuffling on most chromosomes with introgression compared to the syntenic regions and chromosomes without introgression. Our results suggest that hybridization can significantly influence the recombination landscape, and that the reduction in allele shuffling contributes to the initial purging of introgression in the generations following a hybridization event.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.