Abstract
Once the set of finite graphs is equipped with an algebra structure (arising from the definition of operations that generalize the concatenation of words), one can define the notion of a recognizable set of graphs in terms of finite congruences. Applications to the construction of efficient algorithms and to the theory of context-free sets of graphs follow naturally. The class of recognizable sets depends on the signature of graph operations. We consider three signatures related respectively to Hyperedge Replacement ( HR) context-free graph grammars, to Vertex Replacement ( VR) context-free graph grammars, and to modular decompositions of graphs. We compare the corresponding classes of recognizable sets. We show that they are robust in the sense that many variants of each signature (where in particular operations are defined by quantifier-free formulas, a quite flexible framework) yield the same notions of recognizability. We prove that for graphs without large complete bipartite subgraphs, HR-recognizability and VR-recognizability coincide. The same combinatorial condition equates HR-context-free and VR-context-free sets of graphs. Inasmuch as possible, results are formulated in the more general framework of relational structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.