Abstract
Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO), and so mediates a wide range of effects (e.g. vasodilatation, platelet disaggregation and neural signalling) through the accumulation of cGMP and the engagement of various downstream targets, such as protein kinases and ion channels. Until recently, our understanding of sGC functioning has been derived exclusively from studies of the enzyme in tissue homogenates or in its purified form. Here, NO binds to the haem prosthetic group of sGC, triggering a conformational change and a large increase in catalytic activity. The potency (EC50) of NO appears to be about 100-200 nM. The rate of activation of sGC by NO is rapid (milliseconds) and, in the presence of excess substrate, cGMP is formed at a constant rate; on removal of NO, sGC deactivates slowly (seconds-minutes). Recent investigation of the way that sGC behaves in its natural environment, within cells, has revealed several key differences. For example, the enzyme exhibits a rapidly desensitizing profile of activity; the potency of NO is 45 nM for the minimally-desensitized enzyme but becomes higher with time, deactivation of sGC on removal of NO is 25-fold faster than the fastest estimate for purified sGC. Overall, within cells, sGC behaves in a way that is analogous to the way that classical neurotransmitter receptors operate. The properties of cellular sGC have important implications for the understanding of NO-cGMP signalling. For example, the dynamics of the enzyme means that fluctuations in the rate of NO formation, even on subsecond time scale, will result in closely synchronized sGC activity in neighbouring cells; desensitization of sGC provides an economical way of generating a cellular cGMP signal and, in concert with phosphodiesterases, provides the basis for cGMP signal diversity, allowing different targets (outputs) to be selected from a common input (NO). Thus, despite exhibiting only limited molecular heterogeneity, cellular sGC functions in a way that introduces speed, complexity, and versatility into NO-cGMP signalling pathways.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have