Abstract

Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. The receptor for advanced glycation end products (RAGE) is a multiligand receptor that is expressed ubiquitously in the lungs. Engagement of RAGE leads to activation of multiple intracellular signaling pathways, including NF-kappaB and subsequent transcription of several proinflammatory mediators. To determine the role of RAGE in the innate immune response to S. pneumoniae pneumonia, RAGE-deficient (RAGE(-/-)) and wild-type mice were intranasally inoculated with S. pneumoniae. S. pneumoniae pneumonia resulted in an up-regulation of constitutively present RAGE expression in lung tissue, especially in the interalveolar septae. RAGE(-/-) mice showed an improved survival, which was accompanied by a lower bacterial load in the lungs at 16 h and a decreased dissemination of the bacteria to blood and spleen at 16 and 48 h after inoculation. RAGE(-/-) macrophages showed an improved killing capacity of S. pneumoniae in vitro. Lung inflammation was attenuated in RAGE(-/-) mice at 48 h after inoculation, as indicated by histopathology and cytokine/chemokine levels. Neutrophil migration to the lungs was mitigated in the RAGE(-/-) mice. In addition, in RAGE(-/-) mice, activation of coagulation was diminished. Additional studies examining the effect of RAGE deficiency on the early (6-h) inflammatory response to S. pneumoniae did not reveal an early accelerated or enhanced immune response. These data suggest that RAGE plays a detrimental role in the host response to S. pneumoniae pneumonia by facilitating the bacterial growth and dissemination and concurrently enhancing the pulmonary inflammatory and procoagulant response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.