Abstract

The RecBCD enzyme is required for homologous recombination and DNA repair in Escherichia coli. The structure and function of RecBCD enzyme is altered on its interaction with the recombination hotspot Chi (5'-GCTGGTGG-3'). It has been hypothesized that the RecD subunit plays a role in Chi-dependent regulation of enzyme activity [Thaler, D. S., Sampson, E., Siddiqi, I., Rosenberg, S. M., Stahl, F. W. & Stahl, M. (1988) in Mechanisms and Consequences of DNA Damage Processing, eds. Friedberg, E. & Hanawalt, P. (Liss, New York), pp. 413-422; Churchill, J. J., Anderson, D. G. & Kowalczykowski, S. C. (1999) Genes Dev. 13, 901-911]. We tested the hypothesis that the RecD subunit inhibits recombination by deleting recD from the nuclease- and recombination-deficient mutant recB(D1080A)CD. We report here that the resulting strain, recB(D1080A)C, was proficient for recombination and DNA repair. Recombination proficiency was accompanied by a change in enzyme activity: RecB(D1080A)C enzyme loaded RecA protein onto DNA during DNA unwinding whereas RecB(D1080A)CD enzyme did not. Together, these genetic and biochemical results demonstrate that RecA loading by RecBCD enzyme is required for recombination in E. coli cells and suggest that RecD interferes with the enzyme domain required for its loading. A nuclease-dependent signal appears to be required for a change in RecD that allows RecA loading. Because RecA loading is not observed with wild-type RecBCD enzyme until it acts at a Chi site, our observations support the view that RecD inhibits recombination until the enzyme acts at Chi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call