Abstract

Homologous recombination in Escherichia coli is initiated by the RecBCD enzyme, and is stimulated by DNA elements known as Chi (chi) sites. The RecBCD enzyme is both a helicase and a nuclease. Recognition of chi causes both attenuation of the 3'-->5' exonuclease activity of the RecBCD enzyme, and activation of an exonuclease activity with 5'-->3' polarity, while leaving the helicase activity unaffected. A variety of evidence suggests that chi-recognition by RecBCD enzyme is accompanied by ejection of the RecD subunit. Through examination of RecBCD exonuclease activity under a variety of conditions, we have shown that recognition of chi by the RecBCD enzyme results in a net reduction of nuclease activity. In addition, the exact location of the first cleavage event elicited by chi-activation of the 5'-->3' nuclease is dependent upon the concentration of free magnesium ions. Finally, we have demonstrated that purified RecBC enzyme (i.e. without the RecD subunit) possesses no significant exonuclease activity under conditions where the chi-modified RecBCD enzyme is an active 5'-->3' exonuclease. We have shown that, despite the activation of a 5'-->3' exonuclease, recognition of chi by the RecBCD enzyme results in a net preservation of DNA. This new chi-activated nucleolytic action shows surprising variability in the exact location of its initial cleavage. We have demonstrated that purified RecBC enzyme is not an exact analogue of the chi-activated RecBCD enzyme, suggesting that the biochemical basis of chi-activation is not simply ejection of the RecD subunit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call