Abstract
A detailed study of the effect of gamma radiation on the current–voltage characteristics of the TeO2 thin films of different thicknesses, prepared by thermal evaporation in a vacuum, has been carried out for a much wider range of the gamma radiation doses than made here-to-fore. Subsequently, for the thin films of different thicknesses at different applied voltages, the variations of the current density with dose have been obtained. The current density increases near linearly with the gamma radiation dose up to a critical radiation dose, a dose value higher for the thicker films and decreases thereafter. The sensitivities of these TeO2 thin films at different applied voltages have been found to be in the range 1.2–37.0 nA/cm2/μGy. Correspondingly, the detection limits have also been estimated and have been found to be in the range 0.22–2.16 mGy. Clearly, the TeO2 thin films have high potential for their use as real-time gamma radiation dosimeters in monitoring the gamma radiation doses under a variety of practical situations involving low level to high level of the doses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.