Abstract

AbstractThe reaction of O(3P) atoms with isobutane has been studied by using the discharge‐flow system described previously [1]. The rate constant was measured from determinations of the isobutane concentration in the presence of an excess of O atoms and is given by k1 = (7.9 ± 1.4) × 107 dm3/mol·s at 307 K. In order to explain the observed reaction products, the mechanism requires that the principal process be the successive abstraction of H atoms from isobutane and from the t‐butyl radical to give isobutene. A minor part of the reaction between O(3P) and the t‐butyl radical gives the t‐butoxy radical, which decomposes to acetone. The branching ratios are equation image .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.