Abstract

The problem of the flow generated in a viscous fluid by the impulsive motion of a wavy wall is treated as a perturbation about the known solution for a straight wall. It is shown that, while a unified treatment for high and low Reynolds numbers is possible in principle, the two limiting cases have to be treated separately in order to get results in closed form. It is also shown that a straightforward perturbation expansion in Reynolds number is not possible because the known solution is of exponential order in that parameter. At low Reynolds numbers the waviness of the wall quickly ceases to be of importance as the liquid is dragged along by the wall. At high Reynolds numbers on the other hand, the effects of viscosity are shown to be confined to a narrow layer close to the wall and the known potential sohtion emerges in time. The latter solution is a good illustration of the interaction between a viscous fluid field and its related inviscid field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.