Abstract
We consider the displacement of molten metal from a crater being formed on the cathode during the operation of a vacuum arc under the pressure of the cathode plasma and formulate a criterion for the formation of a thin ridge of expelled liquid metal (a sheet-like jet) at the crater edge. When the ridge height is substantially greater than its thickness, conditions arise for the development of the Rayleigh–Plateau capillary instability, which breaks the axial symmetry of the problem. Estimates are presented, which suggest that this instability is responsible for the breakup of the liquid ridge into jets, which play an important role in the self-sustained operation of a discharge.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have