Abstract

The experimental procedure described is designed to allow calculation of the radiation sterilization dose for medical devices to any desired standard of sterility assurance. The procedure makes use of the results of a series of sterility tests on device samples exposed to doses of radiation from 0.2 to 1.8 Mrad in 0.2 Mrad increments. From the sterility test data a 10(-2) sterility level dose is determined. A formula is described that allows a value called DS Mrad to be calculated. This is an estimate of the effective radiation resistance of the heterogeneous microbial population remaining in the tail portion of the inactivation curve at the 10(-2) dose and above. DS Mrad is used as a D10 value and is applied, in conjunction with the 10(-2) sterility level dose, to an extrapolation factor to estimate a sufficient radiation sterilization dose. A computer simulation of the substerilization process has been carried out. This has allowed an extensive evaluation of the procedure, and the sterilization dose obtained from calculation to be compared with the actual dose required. Good agreement was obtained with most microbial populations examined, but examples of both overdosing and underdosing were found with microbial populations containing a proportion of organisms displaying pronounced shoulder inactivation kinetics. The method allows the radiation sterilization dose to be derived from the natural resistance of the microbial population to gamma sterilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.