Abstract

Previous studies have reported that the mitochondrial DNA (mtDNA) contents of cumulus cells (CCs) in ovarian follicular fluid are correlated with embryo quality. Quantification of mtDNA CCs has been suggested as a biomarker of embryo viability. The aim of this study was to determine the relationship between mitochondrial DNA (mtDNA)/genomic DNA (gDNA) ratio in CCs and IVF outcomes such as fertilization rates and embryo quality in infertile women. This is an observational study on 144 cumulus-oocyte complexes obtained from 144 patients undergoing IVF-intracytoplasmic sperm injection (ICSI) at a single fertility center. The CCs in ovarian follicular fluid from patients undergoing IVF-ICSI were collected by ovum pick-up. A relative copy number quantification was used to determine mtDNA/gDNA ratio. Quantitative real-time PCR for various markers (β2M and mtMinArc gene) was used to determine average mtDNA/gDNA ratio of CCs. Investigation of the correlation between mtDNA/gDNA ratio in CCs and IVF outcomes showed no statistically significant correlation between the mtDNA/gDNA ratio in CCs and fertilization rates. However, mtDNA/gDNA ratio and embryo quality showed a statistically significant positive correlation. A significantly higher mtDNA/gDNA ratio was observed in the good quality embryo group compared with the poor quality embryo group (P < 0.05). In addition, the mtDNA/gDNA ratio showed negative correlation with the patient's age (correlation coefficient= -0.228, P < 0.05). Results of this study demonstrate a negative correlation of mtDNA/gDNA ratio in CCs with patient's age, and a low copy number of mtDNA in CCs may have adverse effects on embryo quality in IVF cycles. These results suggest that the ratio of mtDNA/gDNA in CCs may serve as a biomarker in predicting IVF outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call