Abstract

The inelastic deformation behavior of PMR-15 neat resin, a high-temperature thermoset polymer, was investigated at 316°C. The experimental program was designed to explore the influence of strain rate on tensile loading, unloading, and strain recovery behaviors. In addition, the effect of the prior strain rate on the relaxation response of the material, as well as on the creep behavior following strain-controlled loading were examined. Positive, nonlinear strain rate sensitivity is observed in monotonic loading. The material exhibits nonlinear, “curved” stress-strain behavior during unloading at all strain rates. The recovery of strain at zero stress is strongly influenced by the prior strain rate. The prior strain rate also has a profound effect on relaxation behavior. Likewise, creep response is significantly influenced by the prior strain rate. The experimental data are modeled with the viscoplasticity theory based on overstress (VBO). The comparison with experimental data demonstrates that the VBO successfully predicts the inelastic deformation behavior of the PMR-15 polymer under various test histories at 316°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.