Abstract
The inelastic deformation behavior of PMR-15 neat resin, a high-temperature thermoset polymer, was investigated at 288°C. The experimental program was designed to explore the influence of strain rate changes in the 10−6 to 10−3 s−1 range on tensile loading, unloading, and strain recovery behavior, as well as on the relaxation response of the material. The material exhibits positive, nonlinear strain rate sensitivity in monotonic loading. Nonlinear, “curved” stress-strain behavior during unloading is observed at all strain rates. The strain recovery at zero stress is profoundly affected by prior strain rate. The prior strain rate is also found to have a strong influence on relaxation behavior. The rest stresses measured at the termination of relaxation tests form the relaxation boundary which resembles a nonlinear stress-strain curve. The results suggest that the inelastic behavior of the PMR-15 solid polymer at 288°C can be represented using a unified constitutive model with an overstress dependence of the inelastic rate of deformation. The experimental data are modeled with the viscoplasticity theory based on over-stress (VBO). A systematic procedure for determining model parameters is presented and the model is employed to predict the response of the material under various test histories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.