Abstract

The rate of two-dimensional flux pile-up magnetic reconnection is known to be severely limited by gas pressure in a low-beta plasma of the solar corona. As earlier perturbational calculations indicated, however, the pressure limitation should be less restrictive for three-dimensional flux pile-up. In this paper the maximum rate of reconnection is calculated in the approximation of reduced magnetohydrodynamics (RMHD), which is valid in the solar coronal loops. The rate is calculated for finite-magnitude reconnecting fields in the case of a strong axial field in the loop. Gas pressure effects are ignored in RMHD but a similar limitation on the rate of magnetic merging exists. Nevertheless, the magnetic energy dissipation rate and the reconnection electric field can increase by several orders of magnitude as compared with strictly two-dimensional pile-up. Though this is still not enough to explain the most powerful solar flares, slow coronal transients with energy release rates of order 1025– 1026 erg s−1and heating of quiet coronal loops are within the compass of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call