Abstract

The rate of decarburization of liquid iron in CO-CO2 mixtures and hydrogen at 1800 K has been investigated. The effect of sulfur on the rate in CO-CO2 was also determined. Two experimental techniques were employed, one with the gas flow parallel to the surface of the melt, the other with gas flow perpendicular to it. The rate of decarburization in both CO-CO2 mixtures and hydrogen at high carbon contents is controlled primarily by diffusionsion in the gas film boundary layer near the surface of the liquid. The presence of 0.3 wt pct sulfur reduced the rate of decarburization in CO-CO2 by about 10 pct indicating that a slow chemical reaction on the surface is effecting the rate slightly when the surface is covered with sulfur atoms. The rate of decarburization at low carbon contents in CO-CO2 is controlled primarily by carbon diffusion in the metal. The mass transfer relationships for the experimental geometries employed were investigated by measuring the rate of oxidation of graphite in CO-CO2 mixtures. Previous work in which it was concluded that a chemical reaction was controlling the rate were re-examined and it was concluded that gas phase mass transfer was in fact controlling the rate of the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.