Abstract

Fracture network modeling is an essential part of the design, development and performance assessment of Enhanced Geothermal Systems. These systems are created from geothermal resources, usually located several kilometers below the surface of the Earth, by establishing a network of connected fractures through which fluid can flow. The depth of the reservoir makes it impossible to make direct measurements of fractures and data are collected from indirect measurements such as geophysical surveys. An important source of indirect data is the seismic event point cloud generated by the fracture stimulation process. Locations of these points are estimated from recorded micro-seismic signals generated by fracture initiation, propagation and slip. This point cloud can be expressed as a set of three-dimensional coordinates with attributes, for example Se ijk ={(x,y,z); a|x,y,z∈R, a∈I}. We describe two methods for reconstructing realistic fracture trace lines and planes given the point cloud of seismic events data: Enhanced Brute-Force Search and RANSAC. The methods have been tested on a synthetic data set and on the Habanero data set of Geodynamics’ geothermal project in the Cooper Basin of South Australia. Our results show that the RANSAC method is an efficient and suitable method for the conditional simulation of fracture networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.