Abstract

Hydraulic property of fractured rock masses is commonly undertaken based on 2-D fracture network models, which are cut planes of the real 3-D models. This simplification would lead to a significant underestimation of fracture network permeability. In this study, a numerical procedure is originally developed to address flow problem through 3-D discrete fracture network (DFN) models. In this method, fractures are modeled as circular discs with arbitrary size, orientation and location. Fracture networks are established with fractures following well-known statistical distributions, after which the networks are triangulated and fluid flow is calculated by solving the Reynolds equation using Galerkin method. The results show that the permeability of 2-D DFN models that are cut from an original 3-D DFN model would be underestimated by 19.2 ∼ 43.6%, comparing with that of the 3-D DFN model. For networks that are consisted of power-law size-distributed fractures, the equivalent permeability would decrease exponentially with the increasing length distribution exponent. This tendency can be interpreted by incorporating the average intersection length, which is a parameter that can reflect the connectivity of a fracture network. When the heterogeneity of fracture aperture distribution is considered, some tortuous flow paths are formatted in 3-D fracture networks. The rougher fracture surface, the stronger anisotropy of aperture distribution, and thereby resulting in the larger reduction of the network permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call