Abstract

We investigate the state complexity of languages resulting from the cascade product of two minimal deterministic finite automata with [Formula: see text] and [Formula: see text] states, respectively. More precisely we study the magic number problem of the cascade product operation and show what range of complexities can be produced in case the left automaton is unary, that is, has only a singleton letter alphabet. Here we distinguish the cases when the involved automata are reset automata, permutation automata, permutation-reset automata, or do not have any restriction on their structure. It turns out that the picture on the obtained state complexities of the cascade product is diverse, and for all cases, except where the left automaton is a unary permutation(-reset) or a deterministic finite automaton without structural restrictions, and the right one is a reset automaton or a deterministic finite automaton without structural restrictions, we are able to identify state sizes that cannot be reached — these numbers are called “magic.”

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.