Abstract
We study the nonparametric maximum likelihood estimate (NPMLE) of the cdf or sub-distribution functions of the failure time for the failure causes in a series system. The study is motivated by a cancer research data (from the Memorial Sloan-Kettering Cancer Center) with interval-censored time and masked failure cause. The NPMLE based on this data set suggests that the existing masking models are not appropriate. We propose a new model called the random partition masking model, which does not rely on the commonly used symmetry assumption (namely, given the failure cause, the probability of observing the masked failure causes is independent of the failure time; see Flehinger et al. Inference about defects in the presence of masking, Technometrics 38 (1996), pp. 247–255). The RPM model is easier to implement in simulation studies than the existing models. We discuss the algorithms for computing the NPMLE and study its asymptotic properties. Our simulation and data analysis indicate that the NPMLE is feasible for a moderate sample size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.