Abstract
I study a class of Randall–Sundrum (RS) models with Spontaneous Breaking of Scale Invariance (SBSI). This class of models implements the Contino–Pomarol–Rattazzi (CPR) mechanism to achieve SBSI through the small running of an external close-to-marginal scale-breaking operator that leads to a light dilaton/radion with couplings to matter suppressed by the small running. I show that for radion masses [Formula: see text] KeV, it can serve as a dark matter (DM) candidate, with a lifetime longer than the age of the universe, and show that the experimental bounds from LHC, non-Newtonian gravity and Axion-Like Particle (ALP) searches allow for the existence of such a radion. In spite of the small relic abundance of the light radion produced in this model, we show that it could be possible to obtain the required abundance through additional assumptions, an issue we postpone to the future.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have