Abstract

The electromagnetic field in front of an infinite flat array of antennas can be subdivided into wave channels, each including one of the antennas. Each channel behaves like a hypothetical waveguide similar to a transmission line made of two conductors in the form of parallel strips. A simple derivation then leads to the radiation resistance of each antenna and to some limitations on the antenna spacing. In the usual flat array of half-wave dipoles, each allotted a half-wave-square area, and backed by a plane reflector at a quarter-wave distance, the radiation resistance of each dipole is 480/π = 153 ohms. In a finite array, this derivation is a fair approximation for all antennas except those too close to the edge. This derivation also verifies the known formula for the directive gain of a large flat array in terms of its area. The same viewpoint leads to the radiation resistance of an antenna in a rectangular waveguide, which has previously been derived by more complicated methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.